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Abstract. New lower bounds on the connective constant of the square and simple cubic 
lattice self-avoiding walks are obtained, by enumerating a particular subset of self-avoiding 
walks and using a result of Kesten. We find c((sq)>2.5680 and @(SI?)  >4.352. 

1. Introduction 

The improvement of numerical bounds on the connective constant of self-avoiding 
random walks (SAWS) on lattices has taken place in a sequence of steps of about ten 
years’ duration. The earliest substantive effort recorded in the literature appears to 
be the work of Wakefield (1951), who obtained upper and lower bounds for SAWS 

on the square and tetrahedral lattices. 
In 1959 Fisher and Sykes obtained very good estimates for upper and lower bounds 

on a range of two- and three-dimensional lattices. Indeed, their lower bounds, obtained 
without the aid of a computer, are still the best extant for many lattices. The important 
theoretical work of Kesten (1963) subsequently allowed Beyer and Wells (1972) to 
improve on Fisher and Sykes’ lower bound in the case of the square lattice, though 
as we shall show, their derivation appears to be flawed. In 1976 Wall and White 
computerised the method of finding upper bounds introduced by Wakefield, and 
confirmed some of Fisher and Sykes’s results on the square lattice, though the hand 
calculations of Fisher and Sykes went further! Wall and White also confirmed and 
extended Wakefield’s (1951) upper bound on the connective constant of the tetrahedral 
lattice. 

More recently, Ahlberg and Janson (1982) have introduced a new method for 
obtaining upper bounds which, while it does not improve on Fisher and Sykes’ results 
for the square lattice, does give the best current upper bound for the triangular, 
honeycomb, simple cubic (sc), body-centred cubit (BCC) and face-centred cubic (FCC) 
lattices. 

In this paper we present new and improved lower bounds for the connective 
constant of the square and simple cubic lattices, using a method based on a result of 
Kesten (1963). 

In B 2 we review the methods that have been used to obtain bounds, and in 8 3 
we develop and apply enumerations necessary to utilise Kesten’s method. 
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2. Methods of establishing bounds 

A SAW of n steps on a regular, infinite, lattice is a non-cyclic continuous path connecting 
n + 1 vertices of the lattice. Let c, denote the numbers of n-step SAWS per lattice site, 
so that c1 is just the coordination number of the lattice. Hammersley and Morton 
(1954) have proved that limn-m i 1 / n  ) In c, = inf, (1 / n  ) In c, exists and is greater 
than zero. This limit is called the connective constant, is usually denoted p,  and 
represents the average number of choices that can be made at each step by an infinitely 
long walk. The stronger result that limn+ooc,+2/cn =,U* was proved by Kesten (1963) 
for the hypercubic lattice. The best available result for the rate of approach to the  
limit is that of Hammersley and Welsh (1962) who proved that C, = p n  exp (O(Jn)). 
It is widely believed, and supported by an overwhelming weight of numerical evidence 
and heuristic argument, that c, = p n  exp(O(1og n ) ) ,  but this result has resisted all 
attempts at its proof. For a fuller discussion see Whittington (1982). 

The method first used by Wakefield (1951) and subsequently by Fisher and Sykes 
(1959) and Wall and White (1976) to obtain upper bounds proceeds by determining 
the number of restricted n-step random walks b:', which are random walks that are 
only permitted cycles of at least r steps. Thus by inspection by'  *c, for all r < r ) ,  

while limr+abt'/c, = inf,,ob:'/c,, = 1. The determination of the analogous connective 
constant v, for the random walks b:,rl is then a Markovian problem which can be 
solved for low values of r .  As shown by Fisher and Sykes, v, a p ,  and upper bounds 
are thereby obtained by calculating v, for r = 2,3 ,4 .  . . . Unfortunately, the difficulty 
of evaluating v, increases rapidly with increasing values of r, and it is this limitation 
which prevents bounds being arbitrarily sharpened. By employing a clever numerical 
procedure, Fisher and Sykes were able to obtain v, for r = 2(2)12 for the square lattice. 
Their result p i v I 2  = 2.712 disproved a conjecture of Lehman and Weiss (1958) that 
p = e  = 2.718 28 .  . . . Subsequently Beyer and Wells (1972) expressed doubts as to 
the reliability of the numerical technique employed by Fisher and Sykes, but since 
then Wall and White (1976) confirmed all Fisher and Sykes's results up to vl0,  at 
which point they stopped. There appears no reason to doubt the correctness of the 
result for v12 therefore. 

In order to obtain lower bounds, Fisher and Sykes considered a sequence of proper 
subsets of SAWS. For fixed n the sequence has increasing cardinality. For the square 
lattice the sequence was generated by first restricting steps in the x direction to being 
only in the positive x direction, and then effectively allowing an increasing number 
of steps in the negative x direction, restricted to ensure that the SAW property was 
not violated. Then, having proved a lemma that the analogous connective constant 
A ,  s p,  where r is the size of the 'backward' portion of the walk, evaluation of A,  for 
increasing values of r provided a sequence of lower bounds. In this way the bound 
2.577 s p was obtained for the square lattice, disproving a conjecture of Temperley 
(1956) that p = & + l a  Beyer and Wells (1972) point out that this lower bound is 
not correct due to minor numerical errors. After correction, the best bound obtained 
was p 5 2.542. 

A more systematic approach to lower bounds was given by Kesten (1963), on 
which both this work and that of Beyer and Wells (1972) is based. In order to discuss 
this method, it is necessary to introduce three proper subsets of the set of SAWS. For 
ease of visualisation we restrict the discussion to the square lattice, though the argument 
applies directly to the general d-dimensional hypercubic lattice. Consider a Cartesian 
coordinate system at the origin of the walk, with axes parallel to the lattice axes, and 
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calibrated in units of a lattice spacing. Then we define terminally attached walks 
(TAWS) as SAWS whose first step is along the positive x axis, and which subsequently 
never have x coordinate less than 1 .  That is, after the first step, the walk is confined 
to lie on the right of the y axis. We denote the cardinality of n-step TAWS by t,, and 
clearly t, <c, for n > O .  The next class of walks we consider are called bridges. Let 
xmax denote the (not necessarily unique) maximal x coordinate of an n-step TAW. If 
the x coordinate of the (n  + 1)th vertex (i.e. the last vertex) is equal to xmax, then this 
TAW is a bridge. Denoting the cardinality of n-step bridges by b,, it is clear that 
6 ,  s t,. Finally, we define the class of irreducible bridges as those bridges which cannot 
be decomposed into two concatenated bridges, and denote the class of irreducible 
bridges by s,. 

Kesten proved the important lemma 

If one defines the bridge and irreducible bridge generating functions, B ( x )  and S(x) 
respectively, byB(x)  = X,,,ob,,x" andS(x)  = XnZls,xn, itfollowsfrom the abovelemma 
that B(x)  = 1/[1 -S(x)]. Now since the TAWS, bridges and irreducible bridges all have 
the same connective constant as the SAWS on the same lattice, Kesten observed that 
if pN is the (unique) positive solution of the equation 

then CL&, s k. 
Thus enumeration of irreducible bridges allows a monotonic non-decreasing 

sequence of lower bounds on p to be obtained, by solving the sequence of polynomial 
equations given by (2.2) with increasing N, and is the approach used in this paper. 

The earlier calculation of Beyer and Wells (1972) also made use of Kesten's result, 
but in a less direct manner. From (2.1) Kesten showed that l / ~  is a singular point 
of the bridge generating function B(x ), so that the equation l / B ( x )  = ( X n 3 0 b , x n ~ 1  = 0 
has x, = 1/p as a root. Beyer and Wells point out that the equation l/B(.x) = 
(S, ,  ao&,x ) - 0, with 0 s 6,, s b,, has as its root & 2 x, = 1 /@, so that 1 /TC provides 
a lower bound to p. They then express the function g ( x )  as the ratio of two 
polynomials, so that l /g(x ) = 0 corresponds to a zero of the denominator polynomial. 
In order to evaluate the polynomial coefficients, certain subclasses of TAWS are 
enumerated. Their denominator polynomial is of the form 1 -);na(,a,c", where all 
the an's that have been evaluated (up to azo)  are non-negative. A necessary and 
sufficient condition for the validity of their approach is that a, a 0 for all n > 0, and 
this question is not addressed. Apart from this objection in principle, errors in their 
enumeration have also been detected, so that, for example, their function $*(x) 
deviates from its deficition at O(x6). One is therefore forced to conclude that their 
work does not provide a reliable bound. 

The method proposed by Ahlberg and Janson requires the retention of detailed 
configurational information, so that the set of n-step walks must be classified into a 
number of disjoint subsets, and they demonstrate this approach in the case of the 
square lattice. If this detailed configurational information is not available, they prove 
that an upper bound is given by min(p,, p+) where pCLn=(c, , /c1) and pUh is the 

n - 1  - 

l / n - 1  



2236 A J Guttmann 

positive root of 

q x  n-l = [cn - (4  -21cn-11~ + (4  -2)[(4 - 1)cn-l -cnI, n >2 ,  (3.1) 

where 4 = c 1  is the coordination number of the lattice. This result allows them to 
obtain the best available upper bounds for all common lattices except the square 
lattice, for which the result of Fisher and Sykes is still the best. 

In § 3 we describe the method whereby we have obtained the best current lower 
bounds for the square and simple cubic lattice connective constants. 

3. Derivation of lower bounds 

In order to use Kesten's result (2.2), it is clear that enumeration of irreducible bridges 
is required. The topological constraint imposed by the definition of irreducibility is 
difficult to incorporate into an enumeration program. However, by using Kesten's 
lemma (2.1), one need only enumerate all bridges, and then determine the number 
of irreducible bridges from (2.1). 

A Fortran program was written that generated all TAWS, making use of obvious 
symmetries, and then tested to see which TAWS were bridges. The exponential 
complexity of the problem means that the time required to enumerate TAWS at each 
order rapidly limits the viability of the computation, while the non-Markovian nature 
of the problem, which requires that all TAWS of length n be stored in order to generate 

Table 1. Coefficients of the bridge and irreducible bridge generating functions for the 
square and simple cubic lattices. 

Square lattice Simple cubic 
n b, S,, bra S" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

1 
1 
3 
7 

17 
41 

101 
251 
63 1 

1591 
4 029 

10 235 
26 083 
66 653 

170 689 
437 947 

1 125 515 
2 896 883 
7 466 063 

19 265 059 
49 763 899 

128 670 737 
332 909 215 

1 
2 
2 
2 
2 
4 

10 
26 
56 

118 
256 
586 

1386 
3 262 
7 690 

18 206 
43 520 

104 892 
254 040 
617 440 

1 505 906 
3 687 276 

1 

1 

5 
21 
89 

381 
1673 
7 401 

32 989 
147 077 
657 485 

2 939 725 

1 
4 

12 
36 

112 
392 

1428 
5 380 

19 972 
74 992 

279 976 
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TAWS of length n + 1, means that storage capacity also becomes a limiting factor. By 
judicious data structuring we were able to evaluate bridges of length 22 steps on the 
square lattice and 11 steps on the simple cubic lattice. Application of (2.1) then gave 
the cardinality of irreducible bridges to the same order. These results are shown in 
table 1 below. Using equation (2.2), we then solved the polynomial equation 
Xfl = sflpkfl = 1 with N = 22 and 11 for the square and simple cubic lattices respectively. 
This gave ~ ~ ~ ( s q )  = 2.5680 and pII(sc) = 4.352. These lower bounds may be com- 
pared with the current series estimates of p(sq) =2.6381 and ~ ( s c )  =4.6835, so that 
the square lattice estimate is 2.7% below the series estimate, while the simple cubic 
result is some 7.6% below the series estimate. 

Very recently Nienhuis (1982) has presented very convincing physical arguments 
(though not rigorous mathematical ones) that, for the honeycomb lattice, the exact 
value of p is (2 = 1.847 759. . . . Unfortunately there is no obvious way to 
generalise Nienhuis's technique so that it applies to the square or triangular lattices. 

In table 2 we summarise the best available upper and lower bounds, and the single 
exact result for the two-dimensional lattices, and the best unbiased series estimates 
(where available). It is important to quote unbiased series estimates, as Nienhuis 
(1982) also gives strong arguments to suggest that the exponent characterising the 
growth in the cardinality of the walks is not f, as has been assumed by all biased series 
estimates, but is slightly higher, at = 0.343 75. 

N 

Table 2. Upper and lower bounds on the connective constant.of the SAW problem on a 
range of common lattices. Exact and conjectured results and unbiased series estimates 
are also tabulated. 

Exact or 
Lower Best series conjectured Upper 

Lattice bound estimate estimate bound 

Honeycomb 1.7872" 1.8481 1.847 759' 1.895d 
Square 2.5680h 2.6381' - 2.712" 

2.6968" 

Tetrahedral 2.5325" 2.878' - 2.9175' 
Simple-cubic 4.352h 4.684' - 4.781d 
Body-centred cubic 5.187" 6.529' - 6.695d 
Face-centred cubic 7.644" 10.037' - 10.361d 
Hydrogen-peroxide 169' 1.956' - 1.979' 

Hyper- triangular 3.38' 4.6181' - 4.76' 

a Fisher and Sykes (1959) 

Kagome 2.4453' 2.555" - 
Triangular 3.8404" 4.1517' - 4.354d 

- - Hyper - kagomt 2.335' - 

' Sykes er a1 (1972) 

' Essam and Sykes (1963) 
' J Wilker and S G Whittington (unpublished) 
'Leu (1969) 

This work 
Nienhuis (1982) 
Ahlberg and Janson (1982) 

e Wall and White (1976) 
Guttman er a1 (1968) 

Guttmann and Sykes (1973) 
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